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ABSTRACT

This paper clarifies the relationship between the
absorbed crush energy and the dissipated crush energy
and explores the use of each in crush and conservation
of energy analysis. There is inconsistency and confusion
in the literature of accident reconstruction regarding
when crush analysis and conservation of energy
analysis should use the absorbed crush energy and
when it should use the dissipated crush energy. It is
demonstrated in this paper that crush analysis calls for
the absorbed energy, while conservation of energy
analysis calls for the dissipated energy. However, this
paper also shows that the equations of crush analysis
and conservation of energy analysis can be written in
terms of either the absorbed or the dissipated crush
energies, since the absorbed and dissipated energies
are related through the coefficient of restitution (when
friction-type energy losses are assumed negligible). The
assumptions of crush analysis are explored in order to
develop a consistent approach.

CLARIFYING THE USE OF THE ABSORBED
AND DISSIPATED ENERGIES

Equations (1) and (2) are the well-known crush analysis
equations that relate the crush energy to the approach
velocity and the vehicle changes in velocity for a central
impact [8].

2)

In Equations (1) and (2), V, is the relative approach
velocity at impact, AV, is the approach phase velocity
change for the vehicle under consideration (i = 1,2), M,
and M, are the vehicle masses, and E is the total crush
energy for the impact. Equation (2) does not account for
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the AV that occurs during the restitution phase of the
impact.

There is inconsistency and confusion in the literature of
accident reconstruction regarding whether Equations (1)
and (2) should employ the absorbed crush energy E, or
the dissipated crush energy E,"*** The absorbed energy
is defined as the system deformation energy at the point
of maximum dynamic crush. Prior to the end of the
impact, the structure rebounds partially and restores
some of the absorbed deformation energy back to the
vehicles in the form of kinetic energy. The system
deformation energy at the point the vehicles separate,
after the partial restoration of energy, is the dissipated
energy.’

To clarify the relationship of the absorbed crush energy
to the dissipated crush energy and to explore the use of
each in Equations (1) and (2), consider the physics of a
barrier impact crash test. During a barrier impact,

! In Reference 3, Carpenter and Welcher observed, “Review of the literature
related to collision energy analysis reveals numerous works with conflicting
and, in some cases, incorrect usage of the terms energy absorption, energy
recovery and energy dissipation.” In their paper, they clarify the difference
between the absorbed and dissipated energies in a manner consistent with the
discussion contained in this paper. However, Carpenter and Welcher continue,
“The residual deformation to a vehicle only correlates with the dissipated
energy, not the absorbed energy. Traditional accident reconstruction methods
utilizing energy and post-crash crush data are analyzing the relationship
between the dissipated energy and the BEV or Delta-V, not the absorbed
energy.” As will be discussed below, it is actually the absorbed energy that
correlates to the AV and the BEV.

2 In Reference 7, Happer, et al, cite an equation identical to Equation (25)
below, with the exception that they use the absorbed energy instead of the
dissipated energy. It will be shown below that the role of the coefficient of
restitution in Equation (25) is to convert the dissipated energy into the
absorbed energy, and so, it is actually the dissipated energy that should be
used in this equation.

3 Reference 6 also confuses the use of the terms absorbed energy and
dissipated energy. For instance, on Page 70-16, the narrative reads as follows:
“The G term can be thought of as the energy dissipated without permanent
damage.” As the discussion that follows will show, this statement should have
been given in terms of the absorbed energy, not the dissipated energy.

4 There is nothing unique about the examples given in the first three footnotes.
The intent of these footnotes is simply to offer representative examples, not to
single out these specific publications as unusual.

* This statement is true when friction-type energy losses are assumed
negligible. The derivation of the crush analysis equations [Equations (1) and
(2)] makes this assumption and it is employed throughout this paper.



crushing of the vehicle structure absorbs the vehicle’s
initial kinetic energy. This absorption of energy occurs
during the approach phase of the impact as the vehicle
structure crushes to its maximum depth. This maximum
crush depth occurs when the vehicle velocity goes to
zero, the point of common velocity with the barrier.
Theoretically, the maximum force occurs at the same
time that the crush reaches its maximum depth.

After the approach phase is complete, the impact force
drops quickly as the vehicle structure experiences a
partial rebound from the maximum dynamic crush. This
structural rebound has the effect of imparting a velocity
to the vehicle, in the opposite direction of its initial
velocity, and thus, of restoring some kinetic energy to
the vehicle. When the vehicle separates from the barrier,
the collision force goes to zero and the vehicle structure
finishes rebounding to its final residual crush. The phase
during which the vehicle rebounds from the barrier and
experiences partial structural restoration is referred to as
the restitution phase of the collision.

The force-dynamic crush curve from a barrier impact can
be idealized as shown in Figure 1[4, 10, 11].
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Figure 1 — Dynamic Force-Crush Curve

This force-crush curve has four points that define the
structural response of the vehicle. The curve begins at
Point 1, where there is zero crush and zero force. At
Point 2, the curve has reached the maximum dynamic
crush value C_, and a maximum force value. Between
Points 2 and 3, the curve drops to a lower force level.
Then, from Point 3 to Point 4, the structure experiences
partial restoration to the residual crush C, and the
collision force returns to zero.®

There are three energy values that can be identified
using the force-crush curve of Figure 1. The area
underneath the line from Point 1 to Point 2 is equal to

¢ Other authors have proposed different force-crush curves (Reference 13).
The discussion in this paper is applicable regardless of which idealized force-
crush shape one chooses to use.

the absorbed energy. The area underneath the line from
Point 3 to Point 4 is referred to as the restored energy.
The difference between the absorbed and the restored
energies is the dissipated energy (energy loss). Figure 2
shows each of these areas graphically.
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Figure 2 — Absorbed, Restored, and
Dissipated Energies

Review of the derivation of Equations (1) and (2) reveals
that it is the absorbed energy that should be employed in
these equations. While the derivation of Equations (1)
and (2) appeared in the literature in 1975, the contours
of the derivation are repeated here so that its key
features can be highlighted. Equations (1) and (2) are
based on the one-dimensional, two degree-oi-freedom
mass-spring model shown in Figure 3. In this model, the
masses represent the non-deforming region of each
vehicle and the springs represent the deforming region
of each vehicle.

The equations of motion for the masses of Figure 3 can
be written in the following form:
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M2X2= "'IEL{(Z_ '(Xl_Xz) “)
K +K,

In Equations (3) and (4), M, and M, are the vehicle
masses, X, and X, are the X-direction displacements of

the masses from their original positions, )'f, and X, are

the X-direction accelerations of the masses, and K, and
K, are the stiffnesses of the springs.
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Figure 3 — The CRASH Impact Model’

Subftracting Equation (4) from Equation (3) and letting
6 =X, - X, yields Equation (5).

6+92§=0 (5)

In Equation (5), ...

0= M +M, KK,
MM, K +K,

(6)

At t = 0, the springs are uncompressed (4 =0) and the
relative velocity of the masses is equal to X, —X,,.

Given these initial conditions, the solution to Equation
(5) is given by Equation (7).

5=@h-xﬁyésmgt @

The maximum relative displacement of the vehicles is
given by Equation (8) and occurs when the sine term in
Equation (7) is equal to 1. This is the same time that the
relative velocity between the masses goes to zero, the
time of common velocity.

O e =(X10 '"Xzo)' (8)

1
o

7 Figure 3 is reproduced from Reference 9.

Now let 6 =X -X and §,=X-X,. For force
equilibrium it is necessary that

K0, =K,¥,. ©)

And since ¢ =4, +4,, we can write

K
§=|—2_|s.
1[&+&] (10)

Using Equation (9), (10) and &=4,+6,, Equation (8)
can be written as

. . M +M
X1o “Xzo =\/(—All—-_2]'(l<]51?max +K2522,max) (11)
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The energy absorbed in compressing each of the
springs can be expressed as

E, = lK,JZ

2 max,i *

(12)

Equation (12) is the absorbed energy because it occurs
at the time of maximum crush, prior to any rebound of
the spring that represents the wvehicle structure.
Therefore, Equation (11) can be written as

. . M +M
V,=X,p-Xy= |—1——22-E (13)
A4 10 20 \/]‘411\{[2 A

In Equation (13), E, is the total absorbed energy for the
two-vehicle system. Equation (13) relates the total
absorbed crush energy to the initial relative velocity, V,,
and is equivalent to Equation (1).

At the time of maximum mutual spring compression, the
masses reach a common velocity, V., From
conservation of momentum, this common velocity can
be written as

v =M1X10+M2X20 _ (14)
¢ M, + M,

The changes in velocity experienced by the masses, AV,
and AV, from the initial time, t=0, to the time of
maximum mutual spring compression are, thus, given by
Equations (15) and (16).

M1X10+M2X20] (15)

AV1=X10—VC=XIO_( MM
1 2



MIXIO +M2X20

-X
M, +M, ] »  (16)

AVz =V _Xzo =(

It is important to note that the velocity changes of
Equations (15) and (16) are the velocity changes for the
approach phase of the collision only. They do not
include the restitution phase of the impact, during which
there is an additional AV for each vehicle. Incorporating
Equation (13) into Equations (15) and (16) and
simplifying yields the following expression:

AV,-=-‘1— __A{I_A/[Z_.z E, (17)
M \M +M,

Equation (17) relates the energy absorbed in crushing

the vehicle structure to the change in velocity

experienced by each vehicle during the approach phase

of the impact. It is equivalent to Equation (2).

There are two important points to observe regarding the
derivation of Equations (1) and (2). First, the model of
Figure 3 only considers energy absorption due to
physical displacement of the vehicle structure, as
modeled by the springs. Energy loss due to
intervehicular sliding (friction-type energy loss) is not
considered. Thus, Equations (1) and (2) are applicable
to impacts where the dominant mechanism of energy
loss is vehicle deformation and where intervehicular
sliding is negligible. Equations (1) and (2) do not hold
when energy loss due to intervehicular sliding is
considered. In cases where friction-type energy losses
are significant and need to be considered, Equations (1)
and (2) should not be applied without modification. In
these cases, a direct application of the principle of
impulse and momentum is more appropriate, as
discussed by Brach in Reference 1.

The second observation that should made is that the
derivation of Equations (1) and (2) relies on identifying
the point at which the maximum dynamic crush is
achieved, the point at which the vehicle reaches a
common velocity with the barrier or the other vehicle and
the point of maximum energy absorption (Point 2 in
Figure 1). Confusion may arise surrounding this point
since crush analysis uses measurement of the residual
(static) crush to quantify the crush energy, while the
maximum energy absorption occurs at the maximum
dynamic crush depth. It is natural to think of the residual
crush being associated with the dissipated energy, as it
is in Figure 2. However, it should be kept in mind that
the derivation of Equations (1) and (2) is separate from
the derivation of the residual crush model that actually
provides the crush energy estimate. Equations (1) and
(2) simply provide the physical relationships between the
crush energy and the approach velocity and velocity
changes. They do not provide the tool for actually
quantifying that crush energy.

Equation (18) is used in crush analysis to obtain the

energy value for use with Equations (1) and (2).  (16)
e=(Bctiac, + £
= E z T R+-2—E "W, (18)

In Equation (18), A and B are the crush stiffness
coefficients and w, is the damage width. The A and B
stiffness coefficients can be calculated such that the
residual crush measurements yield either the absorbed
or the dissipated crush energy. This being the case, the
use of residual crush measurements in the model does
not automatically imply that Equation (18) will yield the
dissipated energy.

It can be further demonstrated that the absorbed energy
should be used in Equations (1) and (2) by writing
Equation 1 in a form appropriate for a barrier impact,
where the mass of the barrier approaches infinity, as
follows:

v,= |2 Ea (19)

Equation (19) can be rewritten in the following form:

E, = %Mle (20)

For the barrier impact case, Equation (20) is true by
definition. However, Equation (20) would not be true if
the left hand side were written as the dissipated energy,
since the dissipated crush energy is instead defined as
follows:

1 1
E, =5M1VA2 —EM,VSZ 1)

In Equation (21), E, is the dissipated energy and V; is
the maximum velocity at which the vehicle separates
from the barrier.

Equations (1) and (2), therefore, properly employ the
absorbed crush energy. These equations can, however,
be rewritten in a form that uses the dissipated energy,
since the absorbed and dissipated energies are related
through the coefficient of restitution (when friction-type
energy losses are negligible). This is discussed in the
next section.

REWRITTING EQUATIONS (1) AND (2)

To obtain a different form of Equations (1) and (2), note
the following relationships between the absorbed,
restored, and dissipated energies:



E,=E,—E, (22)

e= |En (23)

Equation (22) is true by definition when friction-type
energy losses are negligible and follows from the
geometry of Figure 2. Equation (23) defines the
coefficient of restitution in terms of the restored and
absorbed energies for crush analysis. When combined
with the effective mass concept [14], Equation (23) can
be shown to be applicable to a general planar impact
during which friction-type energy losses are negligible.
Reference 15 contains a derivation of Equation (23) for
such a general planar impact. When combined,
Equations (22) and (23) yield the following relationship
between the absorbed and dissipated energies:

(24)

Substitution of Equation (24) into Equations (1) and (2)
yields the following set of equations:

v, = M1+M2‘2. Ed2 (25)
MM, 1-¢
av,= L | MMy B (29)
MM +M, 1-¢

Thus, while the derivation of Equations (1) and (2)
dictates that the absorbed energy be input into the
equations, the coefficient of restitution can be used to
write a form of these equations that uses the dissipated
energy. Within Equations (25) and (26), the coefficient of
restitution converts the dissipated energy into the
absorbed energy. It is important to note that even though
Equation 26 includes the coefficient of restitution, it does
not account for the restitution phase of the impact and
still only yields the approach phase velocity changes.

For severe impacts, confusing the absorbed and
dissipated energies will have little effect on the
calculated closing speed and AVs. For severe frontal
impacts, where the coefficient of restitution will usually
fall between 0.1 and 0.2, the difference between the
absorbed and dissipated energies will only be between 1
and 4 percent. Since this difference will fall underneath
the square root signs of the equations for closing speed
and AV, the difference in calculated values that will
result from confusing the absorbed and dissipated
energies will be negligible. The difference between the
absorbed and restored energies would, of course,
become more significant for low speed impacts.
However, the significance of the difference between the

absorbed and restored energies can be considered
negligible from an accuracy standpoint for more severe
impacts and should not be over emphasized for these
cases.

The primary goal of the discussion in this paper is not,
therefore, to achieve any significant improvement in the
accuracy of crush analysis. Instead, this paper aims at a
clear and consistent theoretical description of the use of
the absorbed and dissipated energies. The value of this
discussion lies primarily in gaining understanding and
clarity. Such understanding and clarity becomes
essential when, for instance, one attempts to understand
the relationship between the equations of crush analysis
and the equations of planar impact mechanics — a
discussion taken up later in this paper. Beyond that,
there is always value in understanding the applications
and limitations of the models that one employs.

GENERALIZING CRUSH ANALYSIS

The model of Figure 3 is one-dimensional, as are the
equations that it yields, Equations (1) and (2) or
Equations (25) and (26). Each vehicle is allowed to
translate along a single coordinate direction and rotation
is not considered. The restitution phase of the impact is
considered negligible and since residual crush
measurements are taken perpendicular to the original
vehicle side, the crush energy calculated with Equation
(18) inherently assumes that the collision force acted
perpendicular to the original shape of the damaged side.
Equations (1) and (2) and Equations (25) and (26) are,
thus, applicable to central impacts where the restored
energy is negligible and the collision force acts
perpendicular to the original shape of the damaged
vehicle side.

How is it that the one-dimensional equations of crush
analysis can be extended to the general two-
dimensional (planar) impact, where each vehicle has
three degrees-of-freedom - two in translation and one in
rotation — where the collision forces do not act through
the vehicle centers of gravity, where the collision forces
are not applied perpendicular to original shape of the
damaged vehicle side, and where restitution is not
negligible? This general application of the crush analysis
equations is accomplished, first, by incorporating the
restitution phase of the impact, second, by using the
effective mass concept, and third, by adjusting the
calculated damage energy to reflect non-perpendicular
collision forces.

RESTITUTION

References 10, 11 and 15 discuss the incorporation of
restitution into crush analysis and that discussion will not
be taken up here. Suffice it to say here that if the
coefficient of restitution is incorporated into the crush



analysis equations, then Equation (26) can be rewritten
as follows:

M,
AV, = [ MM, 1EE g )
M \M +M, l-¢

For reasons that will be explained, Equation (27) has
been written in a form that uses the dissipated crush
energy.

EFFECTIVE MASS

The effective mass concept is discussed in Reference
14 and a complete description of the concept will not be
taken up here. Suffice it to say here that the effective
mass concept shifts the AV calculation to the point of
collision force transfer using a calculation of the portion
of the mass of each vehicle, the “effective mass,” acting
at that point of collision force transfer. The effective
masses are given by Equation (28).

k2
Me,izkz_;_hz M, =yM, (28)

In Equation (28) &, represents the radius of gyration
and 4, represents the collision force moment arm.

When the effective masses are substituted into Equation
(27), the resulting equation will yield the change in
velocity for each vehicle at the point of collision force
transfer, AV, . The effective mass multiplier, y, can then

be used again to transfer the calculated AV back to the
vehicle centers of gravity. The resulting equation is the
center of gravity velocity changes for non-central
impacts and is given as follows:

1 — l+¢
AI/'iz——\/ZMe-——-Ed (29)
M, l1-¢
The form of Equation (29) has been simplified using the
following formuia:

M = nMy,M, (30)
"M, +y,M,

e

NON-PERPENDICULAR COLLISION FORCES

Since residual crush measuremenis are taken
perpendicular to the original shape of the damaged
vehicle side, the damage energy that results from
Equation (18) only yields the crush energy normal to the
damaged vehicle side. The damage energy, thus, needs

to be adjusted to include the portion of the collision force
that acted tangential to the damaged vehicle side.

There are two basic approaches that have been
proposed for adjusting the damage energy to reflect the
tangential component of the collision force. The first
approach is to adjust the residual crush depth so that it
represents the distance the structure was displaced
along the direction of the collision force. It is important to
note that the normal and tangential directions relative to
the vehicle are not necessarily the same as the normal
and tangential directions for the overall impact, as they
are used in planar impact mechanics [1]. Recall that
Equations (1) and (2) are derived assuming that friction-
type energy losses are negligible. If this is the case,
there will not be any energy loss along the tangent
direction for the overall impact, but only along the overall
impact normal direction. Thus, when a non-
perpendicular collision - force is specified for crush
analysis, this is equivalent to orienting the overall impact
normal direction relative to the vehicle side normal. The
crush depth is therefore adjusted to reflect its length
along the collision normal. This approach is used in
CRASHS3 and it results in the energy being multiplied by
the following multiplier [12]:

1+tan’ & (31)

In Equation (31), o is the angle between the damaged
vehicle side normal and the actual direction of the
collision force.

References 5 and 17 have proposed that the width of
the damaged region should also be adjusted to reflect
the direction of the collision force. When both the crush
depth and the crush width are adjusted, the crush
energy multiplier that results is given by Equation (32).

1
cos

(32)

What is important to realize here is that, while Equations
(31) and (32) clearly yield different numerical values,
they share the same basic philosophy of adjusting the
crush depth to reflect the distance the vehicle structure
was displaced along the direction of the collision force
(the impact normal direction). In this approach, there is
no attempt to account for friction-type losses along the
tangential direction and the dominant mechanism of
energy loss, along the PDOF, is still considered to be
physical displacement of the vehicle structure.

The second approach that has been proposed for
adjusting the crush energy attempts to allow for friction-
type losses along the tangent by introducing an
intervehicular friction coefficient p. This approach has
resulted in the proposal of the following two additional
energy multipliers [10, 12]:



(cosa+ usinar)’ (33)

1+ utanex (34)

The problem with aftempting to adjust the damage
energy to include friction-type losses is that Equations
(1), (2), (25), (26), and (29) are no longer valid once
friction losses are considered. In Reference 1, Brach
gives a more general form of Equations (29) that
includes friction-type losses, as follows:®

1| oM+ )1+ e)E,
g )

The dissipated energy for Equation (35) is given in
Reference 1 by Equation (36), as follows:

E, =%EV;{(I—62)+r2{2(ﬁj—(th}} (36)

Incorporating the effective mass multipliers into Equation
(25) and rewriting vyields the following equation for the
dissipated crush energy within CRASH-type crush
analysis:

AV, =

B, = MVi-¢) e

Comparison of Equations (36) and (37) reveals that the
dissipated energy in crush analysis does not include the
friction-type losses, since Equation (37) does not contain
either of the terms in Equation (36) that incorporate the
intervehicular friction coefficient, . Even if Equation (37)
could be adjusted using a multiplier to add in these
friction losses, that would not be enough. Comparison of
Equations (29) and (35) reveals that the equations of
crush analysis do not only neglect friction losses in the
calculation of the damage energy, they also neglect
friction losses when relating the damage energy to AVs.
in other words, both Equations (29) and (37) neglect the
friction-type losses, and so, it is not sufficient in crush
analysis to simply correct the calculated crush energy to
include friction losses. Equation (29) would also have to
be adjusted.

This leads to two important conclusions. First, the
equations of crush analysis should not be applied in
cases where friction-type energy loss is significant
relative to the energy loss due to plastic deformation.
Second, the first approach to adjusting the damage

¥ In Reference 1, Brach limits the applicability of Equation (35) to particle
impact collisions. However, through use of the effective masses, the equation
can be applied to the general planar impact problem.

energy — adjusting the crush depth to reflect the
direction of the collision force — is more consistent with
the assumptions of crush analysis. In this approach, the
one-dimensional Equations (1) and (2) are applied to
analyze a general planar impact by first shifting the
problem to the point of collision force transfer (effective
mass concept), then orienting the problem along the
direction of the collision force (crush depth adjustment),
then calculating the AVs due to plastic deformation along
the direction of the collision force at the point of collision
force transfer, and finally shifting the solution back to the
vehicle centers of gravity (effective mass concept). The
effective mass concept and the adjustment of the
residual crush depth to reflect the direction of the
collision force are effectively used to reduce any general
planar impact to a one-dimensional, central impact, with
two bodies of some effective mass.

CONSERVATION OF ENERGY

Reference 14 described a method for combining crush
analysis with conservation of energy analysis. In that
discussion, the energy balance equation was written
with the absorbed crush energies, since restitution was
neglected in the derivation. However, when restitution is
considered, the energy balance equation should be
written with the dissipated energies as follows:

1 1 1 1
EMJ/IZ +§M2V22 =5M1V]§ +EM2V;f

(38)
1, ., 1. .,
+§Ill//1f +512'/’2f +E,+E,

in Equation (38), V, and V, are the vehicle impact
velocities, V,, and V, are the vehicle velocities at
separation, y,, and y,. are the yaw velocities of the

vehicles at separation, and E, and E,, are the dissipated
energies for the two vehicles. The initial rotational
velocities are assumed negligible.

In this case, the dissipated energies are used because
the point of reference in Equation (38) is no longer the
point of common velocity during the impact, but the
difference between the kinetic energy of the vehicles
before and after the impact, including the restitution
phase of the impact. The difference in kinetic energy
immediately before and immediately after the impact is,
by definition, the total dissipated energy.

So it is the point of reference used by each method that
determines which crush energy quantity should be used.

Equations (39) and (40) demonstrate this with the use of
a shorthand form of the energy balance equation.

KE -KE_ =E, (39)

KEi_KEsep =Ed (40)



In Equations (39) and (40), KE, denotes the kinetic
energy of the two-vehicle system at the beginning of the
impact, KE_ is the kinetic energy of the system when

the common velocity is reached on the contact surface
between the vehicles, and KE,,, is the kinetic energy of
the system when the vehicles separate. Equations (39)
and (40), thus, define the principles necessary to
achieve consistent use of the absorbed and dissipated
energies. It should be noted that we have continued to
neglect friction-type losses in this discussion. This is so
that the resulting energy balance equations can be
consistently applied within crush analysis.

From the equations in References 9 and 10 it can be
shown that

, h
‘/’1f=k_1AVA1(1+€) (41)

2
1

In Equation (41), h, is the collision force moment arm
about the vehicle center of gravity, k, is the radius of
gyration, ¢ is the overall coefficient of restitution for the
impact, and AV, is the approach phase velocity change.

Combining Equation (41) with Equation (2), written for
the non-central impact case, yields Equation (42).

) 1 —=
Vs —h‘—-(l+e)-—,/2-Me-E,, (42)

B ky M,

Substitution of Equation (42), along with its counterpart
for Vehicle #2, into Equation (38) yields Equation (43).

%11411/12 ‘*";’Alez2 =
(43)

1 1
EMlVlzf +5M2V2?f +§+Ed1 +Ed2

The £ term in Equation (43) is given by Equation (44).

§=(1+g)2./3.(_Ed1_+£g_22_j (44)

1-g2 1-¢]

In Equation (44), Bis given by Equation (45).

B= h M,
kL +h nM +7,M, 5)
h,  nM,

K +h nM, +y,M,

In Equation (44), ¢, and g, are vehicle-specific
coefficients of restitution described in Reference 14.

In order to maintain the use of dissipated energy in
Equation (43), Equation (44) utilized Equation (24). Now,
to obtain consistency with Equations (1) and (2),
Equation (24) can be substituted in into Equations (43)
and (44) for each of the dissipated energy terms to yield
Equations (46) and (47).

1 1

EMIVIZ +—2—M2V22 =
1 1 46
EMlVlff +5M2V22f+§+ (48)
(I_SIZ)EAI +(1“‘£22)EA2

E=(1+¢ef B E, (47)

DISCUSSION AND CONCLUSIONS

Determining whether accident reconstruction analysis
should use the absorbed or the dissipated crush energy
depends on understanding the assumptions invoked for
each equation. For instance, the derivation of Equations
(1) and (2) depends on identifying and exploiting the
time at which a common velocity is reached on the
contact surface between the vehicles. Since this
common velocity is achieved prior to the restitution
phase of the collision, at the time of maximum energy
absorption, the appropriate crush energy value for
Equations (1) and (2) is the absorbed crush energy. On
the other hand, in Equation (38), the crush energy
quantifies the difference between the pre-impact and the
post-impact kinetic energies of the vehicles. This
difference is, by definition, the dissipated energy, and
thus, the dissipated energy should be used with
Equation (38). Both the absorbed and the dissipated
energies can form the basis of a consistent
methodology, since they are related through the
coefficient of restitution. This paper has shown that
Equations (1) and (2) can be rewritten in a form that
calls for the dissipated energy. Alternatively, Equation
(38) can be written in terms of the absorbed energy.
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