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ABSTRACT 

This paper details a method for obtaining the coefficient 
of restitution from a vehicle-to-vehicle crash test and for 
quantifying the uncertainty in the resulting value. The 
coefficient of restitution is determined by analyzing 
accelerometer data to obtain the post-impact velocity 
conditions for the test and, by then, using the method of 
least squares to fit an impulse-momentum solution to the 
results of the accelerometer data analysis.  
 
Uncertainties that affect the accelerometer data analysis 
include uncertainties associated with the acceleration 
readings and the accelerometer locations within the 
vehicle-fixed coordinate system. Uncertainties that affect 
the fit between the impulse-momentum solution and the 
post-impact velocity conditions include uncertainty 
associated with the vehicle weights and moments of 
inertia and uncertainty associated with the placement of 
the impact center. Also, since uncertainties in the 
accelerometer data analysis result in a range of values 
for the post-impact velocity conditions, there is a range 
of possible matches between the accelerometer data 
analysis and the impulse-momentum equations.  
 
This paper presents a case study for which the 
combined effects of uncertainty from the accelerometer 
data analysis and the fitting of this analysis with an 
impulse-momentum solution are quantified. A general 
method is presented for quantifying the uncertainty in the 
analysis of the coefficient of restitution for any particular 
crash test. 
 
INTRODUCTION 

The following steps will yield the coefficient of restitution 
for a vehicle-to-vehicle crash test. First, obtain the crash 
test report, video footage, and signals from at least two 
vehicle-mounted accelerometers per vehicle. For crash 
tests conducted for the National Highway Traffic Safety 
Administration (NHTSA), much of this data is available 

from NHTSA’s research and development website 
(http://www-nrd.nhtsa.dot.gov). Select signals from 
accelerometers attached to portions of the vehicle 
isolated from the crushing region of each vehicle. Use 
vehicle weights, dimensions, crush measurements, 
photographs, and reported accelerometer positions from 
the test report to diagram the impact configuration for the 
test, to determine the location of each vehicle’s center of 
mass (CoM), and to locate the accelerometers for each 
vehicle relative to the CoM. To complete these steps, the 
vehicle data contained in the test report may need to be 
supplemented with additional specifications obtained 
from other sources.  

Next, filter the accelerometer signals and, then, analyze 
them in accordance with the equations presented in 
References 1, 2, and 3. These equations will yield the 
vehicles’ translational and angular velocities throughout 
the impact. These, in turn, can be used to obtain the 
CoM change in velocity (DV), the post-impact yaw 
velocity, and the post-impact velocity direction for each 
vehicle. The relevant equations from these publications 
are included in the “Accelerometer Data Analysis” 
section below. 

Based on the impact configuration diagram and crush 
profiles, determine the orientation of the intervehicular 
contact surface and then estimate the impact center 
location for the impact. The impact center is the point at 
which the resultant collision force is transferred during 
the impact. Finally, apply the equations of planar impact 
mechanics (pim) to determine the coefficient of 
restitution for each test [4]. Within the planar impact 
mechanics analysis, use the method of least squares to 
optimize the impact center location, impulse ratio, and 
coefficient of restitution to obtain the best possible match 
with the DVs, post-impact yaw velocities and post-impact 
velocity directions determined from the accelerometer 
data analysis [5]. Once the best fit match is obtained, the 
coefficient of restitution from this optimization can be 
considered the coefficient of restitution for the crash test. 
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ACCELEROMETER DATA ANALYSIS 

References 1, 2 and 3 present equations from which a 
vehicle’s CoM DV, post-impact velocity magnitude and 
direction, and its post-impact yaw velocity can be 
obtained based on data from two accelerometers located 
at known points on the vehicle. These equations are 
given below in Equations (1), (17), (18), (19), (24), (25), 
(30) and (31). The reader is referred to these references 
for a full treatment of these equations. 

Figure 1 shows the orientation of the vehicle-fixed 
coordinate system used for many crash tests. This figure 
also shows the location of two accelerometers, a and b, 
located relative to the vehicle CoM with the vectors ra 
and rb. Given this vehicle-fixed coordinate system and 
the position vectors ra and rb, the following equation 
yields the vehicle’s yaw acceleration based on signals 
from accelerometers a and b:  
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In Equation (1), aax and aay are the x and y direction 
accelerations at accelerometer a, abx and aby are the x 
and y direction accelerations at accelerometer b, and rax, 
ray, rbx, and rby are the longitudinal and lateral 
coordinates of accelerometers a and b relative to the 
vehicle CoM.  

 
Figure 1 – Vehicle-Fixed Coordinate System  

with Accelerometer Locations 
 
The uncertainty in the angular acceleration of Equation 
(1) can be written as follows [6, 7, 8]: 

22222222

22222222

axbxayby

byaybxax

rHrGrFrE

aDaCaBaA

dddd

dddd
da

+++

++++
=  

In Equation (2), the variations, daax, dabx, daay, daby, drby, 
dray, drbx, and drax, represent the uncertainties in the 
measured values of aax, abx, aay, aby, rby, ray, rbx, and rax. 

The variables A through H are referred to as the 
sensitivity coefficients and are defined by Equations (3) 
through (10). 
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The uncertainty in the accelerometer positions for a 
particular crash test will depend on the method used to 
measure their location. Assuming that a particular test 
facility employs a consistent methodology, the 
uncertainties in the accelerometer locations will be 
independent of the coordinate direction and the specific 
accelerometer, so that drby=dray=drbx=drax=dr. The 
acceleration uncertainties cannot be simplified in this 
same way, since, in general they will vary from 
accelerometer to accelerometer and from coordinate 
direction to coordinate direction. Equation (2) can, 
therefore, be written as follows: 
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In the analysis that follows, the acceleration 
uncertainties for each channel will be stated as a fixed 
percentage of the full-scale value. Thus, in Equation 
(11), E and G will be the only non-constant terms.  

Integration of Equation (1) yields the vehicle’s yaw 
velocity. By examining Equations (1) through (11), 
several observations can be made that are relevant to 
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assessing the uncertainties that will propagate through 
this integration into the calculated yaw velocity. First, the 
yaw acceleration depends on the longitudinal and lateral 
distances between accelerometers a and b, not the 
accelerometers absolute position relative to the vehicle 
CoM. In Equations (1) through (11), these distances are 
assumed constant and their signs depend on the 
quadrants in which the accelerometers are located. 

Second, when rbx » rax and rby » ray, the denominator of 
Equation (1) will become very small and the sensitivity 
coefficients A through D will become large. In this case, 
Equation (1) will exhibit excessive sensitivity to the 
uncertainties in the accelerometer positions and the 
acceleration readings. Since the denominator of 
Equation (1) is the square of the distance between the 
accelerometers, Equation (1) will be least sensitive to 
measurement uncertainties when the distance between 
the accelerometers is maximized. The distance between 
accelerometers can, therefore, be used as a quantitative 
tool for judging between two possible accelerometer 
combinations. 

Finally, the sensitivity coefficients for the acceleration 
uncertainties, Equations (3) through (6), are inversely 
proportional to the square of the distance separating the 
accelerometers. The sensitivity coefficients for the 
position uncertainties, Equations (7) through (10), are 
inversely proportional to the distance separating the 
accelerometers, raised to the fourth power. Thus, in 
general, the sensitivity coefficients related to the 
positional uncertainties will be of smaller magnitude than 
those related to the acceleration uncertainties and the 
analysis will be more sensitive to the acceleration 
uncertainties than the positional uncertainties. 

To quantify the propagation of uncertainty from the yaw 
acceleration, da, into the yaw velocity, consider the 
following equation, which represents integration of the 
yaw acceleration using the Trapezoid Rule: 
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Equation (12) yields the yaw velocity at time t based on 
the yaw velocity at the prior time step, t-Dt, and the yaw 
acceleration at times t and t-Dt. The uncertainty 
associated with Equation (12) can be written as follows: 
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Equation (13) accounts for the uncertainty that accrues 
in the integration due to uncertainty in the discrete 
values of the angular acceleration. It does not account 
for the discretization error inherent in the integration. For 
the analysis carried out later in this paper, the magnitude 

of the discretization error was examined [6] and it was 
found to be negligible relative to the effects of the 
uncertainty in the discrete angular acceleration values. 
This being the case, the discretization error is not 
discussed here.  

After evaluating the partial derivatives, Equation (13) can 
be rewritten as follows: 
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Integrating the angular velocity data from Equation (12) 
yields the vehicle heading angle. Analogous to Equation 
(12), Equation (15) gives a Trapezoid Rule integration of 
the angular velocity. 
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Analogous to Equation (14), Equation (16) yields the 
uncertainty in Equation (15). 
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Thus, Equations (11), (14), and (16) yield the uncertainty 
in the calculated yaw acceleration, yaw velocity, and 
heading angle when we rely on Equations (1), (12), and 
(15) to calculate these quantities.  

In addition to Equation (1), the following equation is also 
used to obtain the vehicles’ CoM accelerations: 
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As with Equation (1), Equation (17) depends on the 
distance between accelerometers a and b, not the 
accelerometers absolute position relative to the vehicle 
CoM. The denominator of Equation (17) is also identical 
to the denominator of Equation (1) and, thus, sensitivity 
in Equation (17) will also be minimized by selecting 
accelerometers that are as far apart as practical. Using 
the same technique as that used above, it can be shown 
that the uncertainty in Equation (17) is equal to the 
uncertainty in Equation (1). Thus, Equation (11) also 
characterizes the uncertainty in Equation (17). 

The following equations yield the CoM x and y direction 
accelerations in the vehicle-fixed coordinate system: 
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Since these equations rely on Equations (1) and (17), 
the uncertainties in Equations (1) and (17) propagate 
into the CoM accelerations. Following the methodology 
used to develop Equation (11), it can be shown that 
Equations (20) and (21) yield the uncertainties in the 
CoM accelerations. 
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By examining Equations (20) and (21) we can observe 
that the uncertainties in the CoM accelerations can be 
minimized by selecting data from a pair of 
accelerometers that have opposite signed coordinates 
relative to the CoM. The uncertainties would be 
minimized most effectively by the accelerometers having 
coordinates of equal magnitudes and opposite signs 
since this would entirely eliminate the effect of the 
uncertainties in the angular acceleration. This suggests 
selection of accelerometers placed diagonal to one 
another. 

Since Equations (18) and (19) depend not only on the 
relative position of the accelerometers, but also on their 
positions relative to the vehicle CoM, Equations (20) and 
(21) should consider uncertainty in the accelerometer 
positions due to uncertainty in locating the vehicle CoM. 
The vehicle CoM location rearward of the front axle is 
obtained with the following equation [9]: 
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In Equation (22), df is the distance between the front axle 
and the CoM, WR is the weight on the rear axle, WT is the 
total vehicle weight, and l is the vehicle wheelbase. 
Following the methodology used throughout this paper, it 
can be shown that the uncertainty in df is given as 
follows: 

222

�
�

�
�
�

�+��
�

�
��
�

�
+��

�

�
��
�

�
=

l
l

W
W

W
W

dd
T

T

R

R
ff

ddd
d  

After obtaining the CoM x and y accelerations and the 
yaw velocity, the vehicle velocity components in the 
vehicle-fixed coordinate system are obtained by 
integrating the following equations: 

wva
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du
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wua
dt
dv
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In Equations (24) and (25), u is the vehicle’s longitudinal 
velocity and the v is its lateral velocity. Using the 
Trapezoid Rule to perform the integration of these 
equations yields Equations (26) and (27). 
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Equation (28) gives the uncertainty in Equation (26) and 
Equation (29) gives the uncertainty in Equation (27). 
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Once the vehicle velocity components have been 
obtained in the vehicle-fixed coordinate system, the 
following equation can be used to transform them into 
the inertial coordinate system: 

qq svcuVx ×-×=  

qq cvsuVy ×+×=  

In Equations (30) and (31), cq = cosq and sq = sinq. The 
uncertainty in the inertial frame velocities can be written 
as follows: 

( ) 222222 dqqqdqdqd ××+×+×+×= cvsuvsucVx  

( ) 222222 dqqqdqdqd ××-×+×+×= svcuvcusVy  
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Now, the vehicle’s change in velocity can be calculated 
using the following equations: 
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The uncertainties in the DV components and the overall 
DV are then given by the following equations:  
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Evaluating the integrals within Equation (39) and 
substituting in Equations (37) and (38) yields the 
following equation: 
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NHTSA TEST #5257 

As a specific example, consider NHTSA Test #5257, an 
NCAP side impact test involving a 2005 Ford Mustang 
Coupe. In this test, a moving deformable barrier (MDB) 
impacted the driver’s side of the stationary Mustang at 
38.4 mph (61.8 kph) with a heading of 90 degrees 
relative to the Mustang and with the velocity direction 
and wheels crabbed at 27 degrees relative to the MDB 
heading. The area of the Mustang that was contacted by 
the barrier began just rearward of the left front wheel 
well and terminated in the area of the B-pillar. Figure 2 is 
a series of images from the test video depicting the 
collision dynamics and Figure 3 is a graphic reproduced 
from the test report that depicts the impact configuration. 

The Mustang was instrumented with three tri-axial 
accelerometers that were isolated from the crushing 
region of the vehicle – at the right front sill, the right rear 
sill, and the trunk floor. As shown previously, the 
sensitivity to uncertainties can be minimized by selecting 
the accelerometer combination with the maximum 
distance separating the accelerometers. In this instance, 
the maximum separation distance was obtained by using 
the right front sill and the trunk floor accelerometers and, 
thus, our analysis of the Mustang rotation relied on this 
combination. The MDB was instrumented with tri-axial 
accelerometers in the area of the MDB CoM and on the 
MDB frame in the area of the left rear wheel. 

 
Figure 2  – NHTSA Test #5257, 2005 Ford Mustang, Side Impact Protection Test 
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(40) 
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Figure 3 – NHTSA Test #5257, Impact Configuration 

 
Longitudinal and lateral acceleration signals were 
obtained for these accelerometers and, after filtering, 
they were used in conjunction with the previously 
described equations to calculate each vehicle’s angular 
velocity, heading, CoM accelerations, and velocity 
change throughout the duration of the impact. To 
estimate the uncertainty in this analysis, it is necessary 
to estimate the uncertainties in both the accelerometer 
locations and the acceleration readings. Appendix A 
examines the magnitude of these uncertainties and 
concludes that the uncertainty in the accelerometer 
locations relative to the CoM is on the order of 4 
millimeters and that the uncertainty in the acceleration 
readings is about 1.5% of the channel’s full-scale value, 
with a confidence around 75%. The reader is referred to 
Appendix A for a full discussion and justification of these 
values. 
 
This level of uncertainty in the accelerations was 
obtained with signals filtered with a CFC 60 filter. SAE 
J211-1 [10] recommends the use of a CFC 180 filter for 
acceleration signals that will be integrated to obtain 
velocity and displacement. However, the analysis 
reported in Appendix A resulted in the conclusion that 
the CFC 180 filter had too high a level of uncertainty to 
be useful for our analysis here. The analysis reported in 
Appendix A tested the effect of the filter class on the 
integrated results and found that using a CFC 60 filter 
produced integrated results very close to those obtained 
with the CFC 180 filter. Thus, using a CFC 60 filter 
significantly reduced the level of uncertainty in the 
signals and had little effect on the results of the 
integration. 

Given these uncertainty levels, Figure 4 is a graph 
containing high-end, low-end and mid-range yaw velocity 
curves for the Mustang in Test #5257. The high-end and 
low end curves bracket the uncertainty in the yaw 
velocity with a confidence level around 75%. Figure 5 is 
a graph containing similar curves for the MDB. 

Consistent with the implication of Equation (14), the 
uncertainty in the yaw velocities accrues as the 
integration of the angular acceleration progresses and, 
thus, the low-end and high-end yaw velocity curves 
become progressively farther apart.  

 
Figure 4 – Test #5257, Mustang Yaw Velocity Curves 

 
Figure 5 – Test #5257, MDB Yaw Velocity Curves 

Figures 6 and 7 are graphs containing high-end, low-end 
and mid-range heading angle curves for the Mustang 
and the MDB, respectively. Again, the high-end and low-
end curves bracket the uncertainty with a confidence 
level around 75%. Consistent with the implication of 
Equation (16), the uncertainty in the heading angle also 
accrues as the integration of the angular velocity 
progresses in time. In the case of the heading angle, this 
increase in uncertainty is due both to the integration 
process and to the progressively increasing uncertainty 
in the yaw velocity. 

Figures 8 and 9 depict the resultant CoM accelerations 
for the Mustang and the MDB, respectively. The 
resultant acceleration on the Mustang approaches zero 
around 72 milliseconds and the resultant acceleration on 
the MDB approaches zero around 76 milliseconds. 
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Taking the average of these yields an impact duration of 
74 milliseconds.  

Figures 10 and 11 depict low and high-end velocity 
change curves for the Mustang and the MDB in this test. 

Examination of Figures 4, 5, 10 and 11 reveals that after 
74 milliseconds the vehicles had experienced the 
translational and rotational velocity changes given in 
Table 1. This table also gives the velocity directions of 
the vehicle centers of gravity after 74 milliseconds. 

 

 
Figure 6 – Test #5257, Mustang Heading Angle Curves 

 
Figure 7 – Test #5257, MDB Heading Angle Curves 

 
Figure 8  – Test #5257, Mustang CoM Acceleration 

 

 

 
Figure 9  – Test #5257, MDB CoM Acceleration 

 
Figure 10  – Test #5257, Mustang DV 

 
Figure 11 – Test #5257, MDB DV 
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DVmustang (mph) 15.9 – 17.9 
DVMDB (mph) 22.4 – 24.8 

Mustang Dw (deg/s) 49 – 96 
MDB Dw (deg/s) 58 – 107 

Mustang Departure Angle (deg) 79.6 – 76.4 
MDB Departure Angle (deg) 40.0 – 50.0 

Table 1 – Test #5257, Accelerometer Data Analysis 
Results 

 
FITTING PIM SOLUTIONS TO THE DATA 

Now that translational and rotational velocity changes for 
NHTSA Test #5257 have been obtained, this section 
describes a procedure that can be used to obtain the 
coefficient of restitution for this crash test. This 
procedure consists of fitting a planar impact mechanics 
solution to the translational and angular velocity changes 
obtained in the previous section. Reference 4 describes 
the equations of planar impact mechanics, which model 
a planar vehicle-to-vehicle impact using the principle of 
impulse and momentum. The reader is referred to this 
reference for a full treatment of these equations.  

To perform the optimization, the analyst completes the 
following steps. First, the vehicle weights and 
dimensions are obtained from the test report. 
Dimensions of the pre-test, undamaged vehicle that are 
not given in the test report can be obtained from 
manufacturer specifications or from an exemplar vehicle. 
 
Second, the vehicle yaw moments of inertia are 
calculated. For the analysis reported in this paper, these 
calculations were carried out using equations from 

References 11 and 12. Next, vehicle specifications, 
photographs, and damage measurements from the 
crash test report are used to diagram the impact 
configuration for the test. Then, the impact center 
location is estimated and located relative to the vehicles’ 
centers of mass. These locations include the lengths of 
lines connecting the impact center to the centers of 
gravity and the orientation of those lines relative to the 
vehicle headings. After that, the orientation of the 
intervehicular contact surface is estimated. An initial 
estimate of the coefficient of restitution and the impulse 
ratio are made and the equations of planar impact 
mechanics are used to calculate translational and 
angular velocity changes for the test. 

Finally, to optimize the planar impact mechanics 
solution, the coefficient of restitution, the impulse ratio, 
and the location of the impact center are iteratively 
changed to minimize the error in matching the target 
translational and angular velocity changes determined 
from analysis of the accelerometer data. The error in the 
match is minimized using the method of least squares 
[5]. One planar impact mechanics solution should be 
optimized to match the low-end translational and 
rotational velocity change values from the accelerometer 
data analysis and another planar impact mechanics 
solution should be optimized to match the high-end 
velocity changes. This yields a range for the coefficient 
of restitution. 

Consider this procedure for the specific case of NHTSA 
Test #5257. Figures 12 and 13 depict planar impact 
mechanics spreadsheets optimized for the high and low-
end speed changes given in Table 2. 

 

 
Figure 12 – NHTSA Test #5257, Low-End Planar Impact Mechanics Optimization 
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Figure 13  – NHTSA Test #5257, High-End Planar Impact Mechanics Optimization 

The low-end optimization resulted in a coefficient of 
restitution of 0.098 and the high-end a coefficient of 
restitution of 0.216. Thus, for Test #5257, we can state 
the coefficient of restitution as 0.157 ± 0.059, implying 
that the coefficient of restitution in this case is certain to 
±38% with a confidence around 75%. Within the 
optimizations depicted in Figure 12 and 13, we have 
considered an uncertainty of ±6 pounds in the vehicle 
weights and ±10% in the vehicle yaw moments of inertia. 
This uncertainty level in the vehicle weight was 
calculated assuming four 1,500 pound capacity wheel 
scales with an uncertainty of 0.1% of full-scale. An 
uncertainty of 10% in the moments of inertia was judged 
to be a reasonable uncertainty level based on the 
discussion in References 11 and 12. The high-end 
moments of inertia generate the low-end coefficient of 
restitution and the low-end moments of inertia generate 
the high-end coefficient of restitution. 

DISCUSSION 

Equations (11), (14), (16), (20), (21), (23), (28), (29), 
(32), (33) and (40) provide general equations for 
quantifying the uncertainties that propagate through the 
analysis of accelerometer data for a vehicle-to-vehicle 
crash test. These equations specifically consider 
uncertainties associated with the physical location of the 
accelerometers and with the acceleration readings from 
those accelerometers. In the specific crash test 
considered here, NHTSA Test #5257, it was estimated 
that there was approximately 4 mm of uncertainty 
associated with the accelerometer locations and that the 
uncertainty in the acceleration readings was around 
1.5% of the full-scale value of each channel. These 
uncertainties resulted in around 6% of uncertainty in the 
magnitude of the velocity changes and around 34% 
uncertainty in the yaw velocities. When these levels of 
uncertainty were then carried into the planar impact 
mechanics analysis, the resulting coefficient of restitution 
had an uncertainty of approximately ±38%. Further 

research would be necessary to say whether or not 
these levels of uncertainty are typical for this type of 
analysis. 

The uncertainty in the coefficient of restitution could be 
reduced by using alternative methods to measure the 
change in translational and angular velocity that each 
vehicle experiences during the impact. For instance, the 
vehicle yaw velocities could be directly measured with 
an angular rate sensor [13]. Since much of the 
uncertainty in the angular velocity determined from 
translational acceleration data arises during integration 
of calculated angular accelerations, direct measurement 
of the angular velocity would eliminate much of this 
uncertainty. 

Another alternative, would be to determine the vehicle 
yaw rates using video analysis or motion tracking 
techniques. These techniques would involve direct 
measurement of the vehicle yaw angles from which the 
yaw velocities would be calculated. Such a process 
would not accrue uncertainty in the manner that the 
integration of angular acceleration does. In principle, 
video analysis could also be used to obtain the CoM 
velocity changes and post-impact travel directions, and 
again, would not be subject to the uncertainty accrual 
that occurs with numerical integration. Of course, these 
techniques have their own set of uncertainties that would 
need to be explored and quantified. 

CONCLUSIONS 

·  Equations (11), (14), (16), (20), (21), (23), (28), (29), 
(32), (33), and (40) provide a means for quantifying 
the uncertainty that accrues in the analysis of 
accelerometer data.  

·  Relevant uncertainties in this analysis include 
uncertainties associated with the accelerometer 
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locations and readings. Analysis of these uncertainties 
results in a range of values for the translational and 
rotational velocity changes that occur during the 
impact.  

·  The analysis of accelerometer data is more sensitive 
to uncertainties in the accelerometer readings than to 
uncertainties in the accelerometer positions. 

·  The effects of these uncertainties can be minimized 
by maximizing the distance between accelerometers 
and by using accelerometers that are placed diagonal 
to one another. 

·  The analysis reported in Appendix A resulted in the 
conclusion that the magnitude of the uncertainty in the 
acceleration readings for a typical crash test would be 
approximately 1.5% of the channel’s full-scale value. 

·  Using the method of least squares, a low-end and 
high-end planar impact mechanics solution can be fit 
to the range of velocity changes obtained from the 
accelerometer data analysis. This results in a range of 
values for the coefficient of restitution for the crash 
test.  

·  In the specific case considered in this paper (NHTSA 
Test #5257), the coefficient of restitution had a range 
of ±38%, with a confidence of 75%. Further research 
would be necessary to determine whether this range 
is typical. 
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APPENDIX A – QUANTIFYING THE UNCERTAINTIES 

Uncertainty in the Accelerometer Locations: NHTSA’s 
Laboratory Test Procedure for FMVSS 214 tests 
requires the test facility to measure the location of the 
accelerometers to an accuracy of ±3 mm (0.12 inches) 
[14]. NHTSA also requires their contractors to use wheel 
scales that are accurate to within 0.1% of full-scale. 
Considering these requirements and assuming first, that 
the test facility used 1,500 pound capacity scales, and 
second, that the wheelbase can also be measured to 
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within 3 mm, Equation (23) allows us to conclude that, 
for NHTSA Test #5257, there would be approximately 3 
mm of uncertainty in the CoM location relative to the 
front axle. So, when located relative to the vehicle CoM, 
the accelerometer locations have approximately 3 mm of 
uncertainty from measuring their location and an addition 
3 mm of uncertainty from locating the position of the 
vehicle’s CoM. Since these are independent 
measurements, these uncertainties can be combined in 
quadrature, resulting in an expected uncertainty level in 
locating the accelerometer relative to the CoM of around 
4 mm.  

Uncertainty in Accelerometer Readings: To understand 
the level of uncertainty that exists in a typical 
acceleration signal, this section considers the following 
question: If two accelerometers were mounted at an 
identical location on a crash test vehicle, how much 
difference would their acceleration readings exhibit? 

To answer this question, the authors examined 
accelerometer signals from the series of full-overlap 
frontal barrier impact tests listed in Table A1. The 
vehicles in these tests were each instrumented with left 
and right accelerometers that were mounted in the same 
longitudinal and vertical area of the vehicle, usually at 
the rear seat crossmember. Because the vehicles in 
these tests experienced little to no yaw rotation during 
the impact, these accelerometer combinations would 
theoretically yield redundant acceleration measurements 
that would only differ due to random measurement 
errors. This is, of course, an idealization since the 
accelerometers are not actually mounted at the same 
location on the vehicle. In reality, one would always 
expect some real difference in the left and right side 
accelerations due to factors other than random 
measurement errors. For instance, the following 
mechanisms would cause a real difference to exist 
between the left and right accelerations measured by the 
accelerometers [15]:  

·  Localized Deformation or Vibration at an 
Accelerometer Mounting Location 

·  Slight Yaw Rotation of the Test Vehicle  
·  A Discrepancy between the Longitudinal and 

Vertical Coordinates of the Accelerometers 
·  Insufficient Mechanical Connection between an 

Accelerometer and the Vehicle  

·  Misalignment of an Accelerometer Relative to the 
Vehicle 

 
For the tests listed in Table A1, statistical analysis was 
conducted of the differences that existed between the 
left and right side acceleration signals, treating them as if 
they were truly redundant measurements of the vehicle 
accelerations. This was done with the expectation that 
this analysis would overestimate the degree to which 
random measurement errors would cause differences 

between two truly redundant acceleration signals. For 
each of these tests, the authors conducted the following 
analysis: 

·  Longitudinal acceleration signals were obtained from 
accelerometers mounted in the same longitudinal 
area of the vehicle. Generally, these accelerometers 
were mounted in the area of the rear seat 
crossmember. 

·  Each signal was filtered with both a Class 60 and a 
Class 180 Butterworth filter. SAE J211-1 
recommends the use of a Class 180 filter for 
acceleration readings that will be integrated to obtain 
velocity and displacement. However, as this analysis 
will show, the filter class significantly influences the 
level of uncertainty that exists in the acceleration 
signals. Thus, all of the analysis of the tests in Table 
1 was carried out with signals obtained from both a 
Class 60 and a Class 180 filter with the intent of 
assessing the effect of the filter class on the level of 
uncertainty.  

·  For each test, the following calculations were carried 
out with both sets of filtered acceleration signals. 
This analysis was conducted over the period of time 
from when the vehicle first contacted the barrier until 
the vehicle separated from the barrier: 

o The normalized peak acceleration was calculated 
to determine the extent to which the channels’ 
full-scale ratings were being utilized. This value is 
the peak acceleration divided by the average full-
scale value.  

o The standard deviation between the acceleration 
signals was calculated at each time step. These 
standard deviations were then normalized with 
the average full-scale value for the two channels 
and then the average normalized standard 
deviation was calculated for the crash pulse. 

o The difference between the acceleration readings 
at each time step was calculated. These 
differences were then normalized using the 
average full-scale value for the two channels and 
the average and standard deviation of the 
normalized differences was calculated. 

Table A1 lists the results of these calculations. The first 
two columns of this table give the test number and the 
vehicle make and model. The third column reports the 
average full scale value for the acceleration channels 
under consideration in each test. The fourth and seventh 
columns of the table report the normalized peak 
acceleration values for the signals obtained with the 
CFC 60 and CFC 180 filters, respectively. These values, 
which indicate the extent to which the full-scale range of 
the channels was utilized, ranged between 8 and 66 
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percent for the CFC 60 filter and between 9 and 69 
percent for the CFC 180 filter. Thus, none of the 
accelerations recorded during these tests approached 
full utilization of the channels’ capacities.  

The fifth and eighth columns of Table A1 report the 
average normalized standard deviation for the 
acceleration signals filtered with the CFC 60 filter and 
CFC 180 filter, respectively. These standard deviations 
allow for meaningful comparison of the level of variability 
between the signals that result from the two filter 
classes. However, they do not provide a meaningful 
quantification of the level of uncertainty in the signals. 
Because they are calculated with only 2 samples, a 
range of ± one standard deviation would only have a 
confidence level of around 50% [6]. In addition to that, 
the average value of the acceleration, in reference to 
which the standard deviation is calculated, also has a 
relatively low confidence level, given that it too was 
obtained with a sample size of only 2.  

From the standpoint of quantifying the uncertainty, it 
seems best to simply determine the degree to which two 
redundant accelerometer signals typically differ from one 
another. This would give us a measure of level of 
uncertainty in the acceleration measurements from a 
single accelerometer. Thus, the sixth and ninth columns 
of Table A1 report the normalized averages and 
standard deviations of the difference between the two 
signals. Percentages listed in parenthesis represent 
confidence levels. For instance, for Test #5259, the CFC 
60 filter produced acceleration signals that, on average, 
differed by 0.46% of full scale. Approximately 68 percent 
of the time, the difference between the signals would fall 
within 1.09% of that average value. Since, within our 
uncertainty analysis, we will assume that the difference 
between redundant measurements of the same 
acceleration could be either positive or negative, it 
makes sense to specify a certainty range centered on 
zero. Thus, in addition to the mean and standard 
deviation, the sixth and ninth columns also contain an 
additional certainty range that is centered on zero. The 
boundaries of these additional certainty ranges are 
defined by the addition of the average difference and 
one standard deviation from the average. In the case of 
Test #5259, the mean and standard deviation define a 
range between -0.63% and 1.55%. To obtain a range 
that is centered on zero, we specified a new certainty 
range between -1.55% and 1.55%. Approximately 81% 
of the differences between the two signals fall within this 
range.  

As Table A1 shows, there were two tests for which the 
full scale values were not reported. Since random 
measurement errors should be a function of this full-
scale value, these tests were not considered. In all of the 
other cases, the CFC 60 filter produced acceleration 
signals with less variability and higher confidence levels 
than the CFC 180 filter. Thus, from a certainty 

standpoint, the CFC 60 filter is preferable. Since SAE 
J211-1 recommends the use of a CFC 180 filter for 
signals that will be integrated to obtain velocity and 
displacement, it is necessary to consider the difference 
in velocity and displacement that would result from the 
use of the two different filter classes.  

Table A2 addresses this issue, reporting the difference 
between the velocity and displacement obtained with the 
signals from the two filter classes. These differences 
were examined at the time the vehicles separated from 
the barriers, denoted by the time at which the average 
acceleration went to zero. Since the average 
acceleration signals determined with the different filter 
classes went to zero at slightly different times, Table A2 
also reports the difference in the apparent impact 
duration between the signals resulting from the different 
filter classes. For the analysis reported in Table A2, the 
integration of the acceleration signals to obtain velocity 
and displacement was carried out using the trapezoid 
rule. As Table A2 shows, the filter class had only a small 
effect on the ultimate value of the velocity, displacement 
and impact duration. 

After calculating the normalized difference between the 
acceleration signals for the tests listed in Table A1, 
these values were pooled to test the degree to which the 
differences between the accelerometer signals in these 
tests could be characterized as random measurement 
errors that would be proportional to the channels’ full-
scale values. This analysis excluded the tests for which 
the full-scale value was not reported and Test #5677, 
which exhibited a variability that far exceeded that of the 
other tests listed in Table A1. The high level of variability 
in the accelerometer signals for this test likely indicates 
the presence of a systematic error in one of the signals 
such that the left and right signals cannot be considered 
redundant acceleration measurements. 

Figure 14 is histogram displaying the results of pooling 
the normalized acceleration differences from the 
remaining tests. This histogram does tend towards a 
normal distribution with a mean acceleration difference 
of 0.22% and a standard deviation of approximately 
1.39%. This data is generally consistent with our 
assumption that the left and right accelerometer signals 
can be considered as redundant measurements that 
differ only due to random measurement errors. Were the 
left and right signals truly redundant, the mean value of 
the acceleration differences would tend toward zero. 
That the mean difference falls as close to zero as it does 
is, thus, an encouraging result in favor of our 
assumption. One could potentially conclude that the 
mean difference of 0.22% represents the degree to 
which the signals are not actually redundant, though this 
conclusion would benefit from a more extensive list of 
tests. At any rate, the data represented in Figure 4 can 
be used to state an overall uncertainty range for a typical 
acceleration signal. Centering this certainty range on 
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zero, this data indicates that redundant acceleration 
measurements would be expected to lie within 1.62% of 
zero around 75% of the time. Given that some of this 

variability is due to the left and right signals not being 
truly redundant, the analysis in this paper used a slightly 
reduced uncertainty range of ±1.5%. 

 

NHTSA 
Test # 

Vehicle 
Make, 

Model, and 
Year 

Average 
Full Scale 

Value 

Maximum 
Acceleration as a 
Percentage of Full 

Scale, CFC 60 

Average Standard 
Deviation as a 

Percentage of Full 
Scale, CFC 60 

Certainty Range for 
Difference between 

Left and Right 
Signals, CFC 60 

Maximum 
Acceleration as a 
Percentage of Full 

Scale, CFC 180 

Average Standard 
Deviation as a 

Percentage of Full 
Scale, CFC 180 

Certainty Range for 
Difference between 

Left and Right 
Signals, CFC 180  

5259 2005 Ford 
Mustang 

99 g 33.8% 0.66% 0.46% ± 1.09%       
(68%) 

0.00% ± 1.55%       
(81%) 

36.7% 2.18% 0.23% ± 3.09%       
(68%) 

0.00% ± 3.32%       
(72%) 

5611 2006 Toyota 
RAV4 

861 g 8.2% 0.38% 0.25% ± 0.62%       
(68%) 

0.00% ± 0.87%       
(80%) 

9.0% 0.57% 0.27% ± 1.30%       
(68%) 

0.00% ± 1.57%       
(76%) 

5613 2006 Nissan 
Frontier 

251 g 19.0% 0.92% 0.78% ± 1.48%       
(68%) 

0.00% ± 2.26%       
(82%) 

24.6% 1.39% 0.73% ± 3.15%       
(68%) 

0.00% ± 3.88%       
(77%) 

5615 2007 
Chevrolet 

Tahoe 

Full Scale 
Value Not 
Reported 

Full Scale Value Not 
Reported 

Full Scale Value Not 
Reported 

Full Scale Value Not 
Reported 

Full Scale Value Not 
Reported 

Full Scale Value Not 
Reported 

Full Scale Value Not 
Reported 

5661 2007 Dodge 
Caliber 

Full Scale 
Value Not 
Reported 

Full Scale Value Not 
Reported 

Full Scale Value Not 
Reported 

Full Scale Value Not 
Reported 

Full Scale Value Not 
Reported 

Full Scale Value Not 
Reported 

Full Scale Value Not 
Reported 

5664 2007 Honda 
Fit 

183 g 23.6% 1.04% 0.04% ± 2.05%       
(68%) 

0.00% ± 2.09%       
(68%) 

26.1% 1.99% 0.02% ± 5.51%       
(68%) 

0.00% ± 5.53%       
(68%) 

5665 2006 Infiniti 
FX35 

147 g 28.7% 0.83% 0.19% ± 1.66%       
(68%) 

0.00% ± 1.85%       
(73%) 

51.63% 2.88% 0.19% ± 8.07%       
(68%) 

0.00% ± 8.26%       
(68%) 

5675 2007 Toyota 
Camry 

99 g 34.7% 0.77% 0.06% ± 1.37%       
(68%) 

0.00% ± 1.43%       
(70%) 

46.3% 2.21% 0.06% ± 5.42%       
(68%) 

0.00% ± 5.48%       
(68%) 

5676 2007 
Chevrolet 
Suburban 

54 g 65.99% 1.12% 0.73% ± 2.14%       
(68%) 

0.00% ± 2.87%       
(74%) 

68.58% 1.63% 0.73% ± 4.50%       
(68%) 

0.00% ± 5.23%       
(74%) 

5677 2007 Toyota 
Yaris 

78 g 62.49% 2.78% 0.67% ± 5.81%       
(68%) 

0.00% ± 6.48%       
(73%) 

68.70% 4.45% 0.66% ± 11.06%       
(68%) 

0.00% ± 11.75%       
(71%) 

5681 2007 Toyota 
FJ Cruiser 

351 g 12.55% 0.42% 0.09% ± 0.76%       
(68%) 

0.00% ± 0.85%       
(73%) 

17.55% 1.29% 0.09% ± 2.98%       
(68%) 

0.00% ± 3.07%       
(69%) 

Overall     0.00% ± 1.62%       
(75%) 

   

Table A1 
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NHTSA Test # Vehicle Make, Model, and Year Separati on Velocity 
Difference Between CFC 

180 and CFC 60 

Separation Displacement 
Difference Between CFC 

180 and CFC 60 

Difference in Impact 
Duration Between CFC 

180 and CFC 60 

5259 2005 Ford Mustang 0.02 mph  0.00 in 0.0 ms 

5611 2006 Toyota RAV4 0.01 mph 0.08 in 1.0 ms 

5613 2006 Nissan Frontier 0.02 mph 0.04 in 0.6 ms 

5615 2007 Chevrolet Tahoe 0.04 mph 0.32 in 5.0 ms 

5661 2007 Dodge Caliber 0.00 mph 0.05 in 0.5 ms 

5664 2007 Honda Fit 0.08 mph 0.18 in 3.3 ms 

5665 2006 Infiniti FX35 0.00 mph 0.16 in 1.8 ms 

5675 2007 Toyota Camry 0.00 mph 0.09 in 0.9 ms 

5676 2007 Chevrolet Suburban 0.00 mph 0.14 in 2.1 ms 

5677 2007 Toyota Yaris 0.01 mph 0.05 in 0.6 ms 

5681 2007 Toyota FJ Cruiser 0.01 mph 0.14 in 2.0 ms 

Table A2 

 
 

 
Figure 14 – Histogram Displaying Pooled Acceleration Differences 


